Menu

Ireland's sailing, boating & maritime magazine

Displaying items by tag: Marine Turbine

The University of Galway has confirmed the successful testing of a next-generation marine hydrokinetic turbine foil for renewable energy.

The technology was designed by US-headquartered global leader in marine energy ORPC Ireland and fabricated by ÉireComposites, based Indreabhán, Co Galway.

A five-metre long foil has been made from high-performance, carbon fibre reinforced polymer, shaped similarly to an airplane wing.

When placed perpendicular to river or tidal currents, the foils spin under that force and the technology sends clean, renewable energy via an underwater generator, the designers say.

The technology underwent intense stress testing in the university’s large structures testing laboratory to demonstrate its ability to withstand operational loads over its design lifetime.

Prior to completing the testing campaign, a destructive static test was performed on the foil to demonstrate its structural integrity at loads well in excess of what is expected during operation in the marine environment.

The testing programme is part of the €3.9 million European Commission’s Horizon 2020-funded CRIMSON project, and involved 1.3 million fatigue cycles on the turbine foil – the highest number ever reported on a full-scale marine energy component in dry laboratory conditions.

The tests were led by the university’s sustainable and resilient structures research group which is part of the Enterprise Ireland-supported technology centre Construct Innovate and the University’s Ryan Institute.

“The combination of such high-level design and manufacturing with University of Galway’s state-of-the-art testing will improve the reliability of river and tidal energy devices as they move closer to commercial viability,”Dr William Finnegan, Assistant Professor and Principal Investigator of CRIMSON at the University of Galway, said.

Tomás Flanagan, chief executive of ÉireComposites, said his company was delighted that the turbine foils it had made had performed so well during testing.

“The foils have a complex helical shape and are challenging to manufacture; they are a credit to the engineers and technicians who worked on the project,”he said.

Dr William Finnegan, Assistant Professor and Principal Investigator on the CRIMSON project at the University of Galway, inspects the 5m carbon fibre reinforced polymer foil, which has undergone successful stress testing at the University’s Large Structures Testing Laboratory ahead of being trialled in the marine environment in the 80kW RivGen marine hydrokinetic energy turbineDr William Finnegan, Assistant Professor and Principal Investigator on the CRIMSON project at the University of Galway, inspects the 5m carbon fibre reinforced polymer foil, which has undergone successful stress testing at the University’s Large Structures Testing Laboratory ahead of being trialled in the marine environment in the 80kW RivGen marine hydrokinetic energy turbine

“We’re delighted to see our work with ORPC Ireland, University of Galway, and the other partners coming to fruition and we’re excited about the commercial potential for marine hydrokinetic devices in delivering clean, sustainable energy,”he said.

“At a time when global interest is focused on achieving a net-zero emission future, it is great to be making advances in the technology that supports this global shift,” he said.

The successful testing was also welcomed by Patrick Cronin, Director of European Operations at ORPC Ireland.

The next phase of the project will involve trials with the complete turbine in operational conditions at Consiglio Nazionale delle Ricerche’s large towing tank in Rome, Italy.

Published in Power From the Sea

At A Glance – 420 Dinghy Specifications

Crew 2
Type Monohull
Design One-Design
Construction GRP
Rig Bermuda
Keel Centerboard
Trapeze Single
LOA 4.2 metres (13 ft 9 in)
Beam 1.63 metres (5 ft 4 in)
Draft 0.965 metres (3 ft 2.0 in)
Hull weight 80 kilograms (180 lb)
Mast height 6.26 metres (20 ft 6 in)
Main & Jib area 10.25 square metres (110.3 sq ft) [1]
Mainsail area 7.45 square metres (80.2 sq ft)
Jib / Genoa area 2.8 square metres (30 sq ft)
Spinnaker area 8.83 square metres (95.0 sq ft)

Featured Sailing School

INSS sidebutton

Featured Clubs

dbsc mainbutton
Howth Yacht Club
Kinsale Yacht Club
National Yacht Club
Royal Cork Yacht Club
Royal Irish Yacht club
Royal Saint George Yacht Club

Featured Brokers

leinster sidebutton

Featured Webcams

Featured Associations

ISA sidebutton
ICRA
isora sidebutton

Featured Marinas

dlmarina sidebutton

Featured Chandleries

CHMarine Afloat logo
https://afloat.ie/resources/marine-industry-news/viking-marine

Featured Sailmakers

northsails sidebutton
uksails sidebutton
watson sidebutton

Featured Blogs

W M Nixon - Sailing on Saturday
podcast sidebutton
BSB sidebutton
wavelengths sidebutton
 

Please show your support for Afloat by donating